首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82228篇
  免费   10641篇
  国内免费   6046篇
电工技术   14713篇
技术理论   2篇
综合类   8758篇
化学工业   8649篇
金属工艺   4380篇
机械仪表   4844篇
建筑科学   6388篇
矿业工程   3067篇
能源动力   3622篇
轻工业   2623篇
水利工程   2931篇
石油天然气   7799篇
武器工业   1062篇
无线电   8671篇
一般工业技术   8075篇
冶金工业   3017篇
原子能技术   1617篇
自动化技术   8697篇
  2024年   226篇
  2023年   1237篇
  2022年   2304篇
  2021年   2782篇
  2020年   2989篇
  2019年   2595篇
  2018年   2417篇
  2017年   3163篇
  2016年   3261篇
  2015年   3512篇
  2014年   4998篇
  2013年   5271篇
  2012年   6027篇
  2011年   6408篇
  2010年   4692篇
  2009年   4899篇
  2008年   4533篇
  2007年   5437篇
  2006年   5049篇
  2005年   4162篇
  2004年   3645篇
  2003年   3228篇
  2002年   2637篇
  2001年   2152篇
  2000年   1985篇
  1999年   1701篇
  1998年   1338篇
  1997年   1117篇
  1996年   964篇
  1995年   818篇
  1994年   771篇
  1993年   517篇
  1992年   408篇
  1991年   341篇
  1990年   309篇
  1989年   288篇
  1988年   184篇
  1987年   113篇
  1986年   80篇
  1985年   70篇
  1984年   61篇
  1983年   35篇
  1982年   44篇
  1981年   19篇
  1980年   26篇
  1979年   15篇
  1977年   6篇
  1975年   7篇
  1959年   17篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
11.
The current article focuses on mass and thermal transfer analysis of a two-dimensional immovable combined convective nanofluid flow including motile microorganisms with temperature-dependent viscosity on top of a vertical plate through a porous medium, and a model has been developed to visualize the velocity slip impacts on a nonlinear partial symbiotic flow. The governed equations include all of the above physical conditions, and suitable nondimensional transfigurations are utilized to transfer the governed conservative equations to a nonlinear system of differential equations and obtain numerical solutions by using the Shooting method. Numerical studies have been focusing on the effects of intricate dimensionless parameters, namely, the Casson fluid parameter, Brownian motion parameter, thermophoresis parameter, Peclet number, bioconvection parameter, and Rayleigh number, which have all been studied on various profiles such as momentum, thermal, concentration, and density of microorganisms. The concentration boundary layer thickness and density of microorganisms increased as the Casson fluid parameter, Brownian and thermophoresis parameters increased, whereas the bioconvection parameter, Peclet number, and Rayleigh number increased. The thermal boundary layer thickness, concentration boundary layer thickness, and density of microorganisms all decreased. The velocity distribution decreases as the Peclet number, bioconvection, and thermophoresis parameters rise but rises as the Rayleigh number, Brownian motion parameter, and Casson fluid parameter rise. These are graphed via plots along with divergent fluid parameters.  相似文献   
12.
《Ceramics International》2022,48(14):20062-20069
Photocatalytic N2 fixation is a promising and sustainable manufacturing process of ammonia (NH3); however, the NH3 production rate by this method is very low, thus severely restricting further application of this sustainable technology. Therefore, developing an efficient photocatalyst for N2 fixation under mild conditions is urgently required. Herein, ferroelectric Bi2WO6 materials with different surface oxygen defects were prepared, and the concentration of corresponding defects was controlled by adjusting the thermal reduction time. The abundant oxygen defects in Bi2WO6 can provide more reactive sites to promote the effective adsorption of N2, and the photogenerated charge carrier can be efficiently separated benefiting from the internal electric field. These would weaken the N2 triple bond and reduce the activation energy barrier for the conversion of N2 to NH3 under mild conditions. In the absence of sacrificial agents and cocatalysts, the optimized Bi2WO6 with oxygen defects shows an indigenous NH3 yield of 132.175 μmol·g-1·L-1·h-1, which is more than two times higher than that of the original Bi2WO6. Surprisingly, the Bi2WO6 with oxygen defects produced more than eight times NH3 (471.13 μmol·g-1·L-1·h-1) than that of the original Bi2WO6 when assisted by an external magnetic field, thus providing a new perspective for further enhancing the N2 fixation performance.  相似文献   
13.
近年来,微波加热因其高效性和清洁无污染等优点广泛应用于各个领域。然而,微波加热的不均匀性限制了微波作为高效加热能源的应用。通过测量和分析加热腔中的电场分布情况可以帮助设计人员改进微波加热腔体设计,提高微波加热的均匀性。现有的场强测量设备均为有线设备,应用场景极为有限。因此,本文提出了一种由探头、接收机和上位机三部分组成的无线场强探测传感器。介绍了无线场强探测传感器的结构和原理,采用横电磁波小室进行校准。通过一系列测量实验表明实测值与标准场强仪测量值一致性较好,可满足工程测量需求。  相似文献   
14.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
15.
16.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
17.
《Ceramics International》2022,48(15):21600-21609
Stereolithography (SL) shows advantages for preparing alumina-based ceramics with complex structures. The effects of the particle size distribution, which strongly influence the sintering properties in ceramic SL, have not been systematically explored until now. Herein, the influence of the particle size distribution on SL-manufactured alumina ceramics was investigated, including bending strength at room temperature, post-sintering shrinkage, porosity, and microstructural morphology. Seven particle size distributions of alumina ceramics were studied (in μm/μm: 30/5, 20/3, 10/2, 5/2, 5/0.8, 3/0.5, and 2/0.3); a coarse:fine particle ratio of 6:4 was maintained. At the same sintering temperature, the degree of sintering was greater for finer particle sizes. The particle size distribution had a larger influence on flexural strength, porosity and shrinkage than sintering temperature when the particle size distribution difference reached 10-fold but was weaker for 10 μm/2 μm, 5 μm/2 μm and 5 μm/0.8 μm. The sintering shrinkage characteristics of cuboid samples with different particle sizes were studied. The use of coarse particles influenced the accuracy of small-scale samples. When the particle size was comparable to the sample width, such as 30 μm/5 μm and 5 mm, the width shrinkage was consistent with the height shrinkage. When the particle size was much smaller than the sample width, such as 2 μm/0.3 μm and 5 mm, the width shrinkage was consistent with the length shrinkage. The results of this study provide meaningful guidance for future research on applications of SL and precise control of alumina ceramics through particle gradation.  相似文献   
18.
In practical applications of structural health monitoring technology, a large number of distributed sensors are usually adopted to monitor the big dimension structures and different kinds of damage. The monitored structures are usually divided into different sub-structures and monitored by different sensor sets. Under this situation, how to manage the distributed sensor set and fuse different methods to obtain a fast and accurate evaluation result is an important problem to be addressed deeply. In the paper, a multi-agent fusion and coordination system is presented to deal with the damage identification for the strain distribution and joint failure in the large structure. Firstly, the monitoring system is adopted to distributedly monitor two kinds of damages, and it self-judges whether the static load happens in the monitored sub-region, and focuses on the static load on the sub-region boundary to obtain the sensor network information with blackboard model. Then, the improved contract net protocol is used to dynamically distribute the damage evaluation module for monitoring two kinds of damage uninterruptedly. Lastly, a reliable assessment for the whole structure is given by combing various heterogeneous classifiers strengths with voting-based fusion. The proposed multi-agent system is illustrated through a large aerospace aluminum plate structure experiment. The result shows that the method can significantly improve the monitoring performance for the large-scale structure.  相似文献   
19.
This paper proposes a method for the coordinated control of power factor by means of a multiagent approach. The proposed multiagent system consists of two types of agent: single feeder agent (F_AG) and bus agent (B_AG). In the proposed system, an F_AG plays as an important role, which decides the power factors of all distributed generators by executing the load flow calculations repeatedly. The voltage control strategies are implemented as the class definition of Java into the system. In order to verify the performance of the proposed method, it has been applied to a typical distribution model system. The simulation results show that the system is able to control very violent fluctuation of the demands and the photovoltaic (PV) generations.  相似文献   
20.
The flux‐modulating synchronous machine (FMSM) is a new type of multipole SM with nonoverlapping concentrated armature and field windings on the stator. This paper compares the output characteristics of two FMSMs through finite element analysis (FEA) and experiments. In both of the FMSMs, the attachment positions of the armature and field windings are swapped. To determine the reason for the discrepancies in their output characteristics, unsaturated inductances were calculated using a d‐q equivalent circuit. In addition, the calculated results of the inductances were confirmed through a visualization of the leakage fluxes using FEA. The results of the study show that the synchronous inductance can be reduced by attaching the armature winding to the air‐gap side of the stator teeth and that the reduction leads to an increase in output power.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号